
SCALING LIMITS OF RANDOM TREES AND GRAPHS

Figure 1: An image of a cool tree stolen from Igor Kortchemski’s website.
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RAMBLINGS FOR PEOPLE WHO STUMBLE UPON THIS FILE

The other day I woke up to a notifcation that google scholar added these notes to
my profile. I guess this means people might actually end up reading these notes, so I
think I should add some remarks about what these notes even are.

These notes were made for an informal course on scaling limits of random graphs
at McGill in the winter 2025 semester. The intention of the course was to bring grad-
uate students researching combinatorial probability theory up to speed with both the
classical and modern work on scaling limits for random trees and graphs. Focus was
placed on introducing and proving the results from metric geometry and probability
theory that pre-date the ideas of graph scaling limits and supported the emergence
of it. Much of the content from the first three sections was developed by expanding
upon the excellent introduction to scaling limits provided in [LG05].

I have not yet found the time to come back and clean up the presentation and fix
the typos since giving the course. I was going to take down the file for this reason,
but there was a bit of protest to that idea so the file lives to see another day. If a time
of boredom strikes me I may come add the notes from the back half of the course.

Thank you to the many attendees of the course who gave me a reason to actually
learn this material well enough to present it. Special thanks in particular go to my
PhD supervisors Luc Devroye and Louigi Addario-Berry for helping me out with the
preparation and presentation of the material.
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1 RANDOM COMBINATORIAL TREES

This section introduces our main object of consideration, which is
random trees. We discuss two ways to encode trees with discrete
functions and examine the relationships between these encodings.
We then turn our attention to random trees, where the specific trees
of interest are Bienaymé trees.

1.1 ENCODING TREES WITH DISCRETE FUNCTIONS

Most trees we consider in these notes are plane trees, which are finite rooted trees
with an ordering on each collection of siblings in the tree. We shall identify all plane
trees as subsets of the infinite Ulam-Harris tree, which we define now. Let

U =

∞⋃
k=0

Nk,

where we take N = {1, 2, 3, ..., } and N0 = {∅}. We call the elements of U the vertices.
The length of the vector u ∈ U, |u|, is called the generation of u. It is also called
the height of u. If u = (u1, ..., uk), v = (v1, ..., vm) ∈ U we let uv = u · v denote
the concatenation of the two sequences, (u1, ..., uk, v1, ..., vm). The vertex p(v) =
(u1, ..., uk−1) is called the parent of u and u is called the child of p(u). If w =
(w1, ..., wk) ∈ U is such that wi = ui for all 1 ≤ i ≤ k − 1 and wk ̸= uk, then u and
w are called siblings. The set U is called the Ulam-Harris tree (Figure 2 highlights the
tree structure), and we use it to formally define the notion of a plane tree.

Definition 1.1. A finite subset t ⊆ U is called a plane tree if:

(i) ∅ ∈ t.

(ii) If u ∈ t, then p(u) ∈ t.

(iii) There is a collection of non-negative integers (ct(u) : u ∈ t) such that, for all j ∈ N
and u ∈ t, uj ∈ t if and only if 1 ≤ j ≤ ct(u).

We interpret ct(u) as the number of children that u has in t. We also occasionally
refer to this as the out-degree of u. The set of all plane trees is denoted by R in what
follows. The set of all plane trees t such that |t| = n is denoted by Rn. The ordering
on our plane trees is the natural lexicographical ordering of the Ulam-Harris tree.
We shall occasionally need to discuss the genealogical partial ordering of our trees as
well, which we shall denote with ⪯. We write u ⪯ v for two vertices u, v ∈ t if v is a
descendent of u, i.e., v = uw for some w ∈ U. The lexicographical ordering of U is
denoted with ≤.
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Figure 2: A depiction of the set U that highlights its tree structure.

The embedding of our plane trees inside the Ulam-Harris tree, and the corre-
sponding ordering, allow for easy exploration of the tree via depth-first exploration.
We first define the depth-first queue process, and then note why it is useful for char-
acterizing plane trees.

Definition 1.2. Let t ∈ Rn and let u1, ..., un be the vertices written in lexicographical
order. Write (c1, ..., cn) = (ct(u1), ..., ct(un)). The sequence of integers (qk)

n
k=0 with

qk =

k∑
i=1

(ci − 1)

is called the depth-first queue process of the tree t (DFQ). Any sequence (xk)
n
k=0 such

that

(i) x0 = 0, xn = −1,

(ii) xk ≥ 0 for all 0 ≤ k ≤ n− 1

(iii) xk − xk−1 ≥ −1 for all 1 ≤ k ≤ n

is called a Łukasiewicz path of length n. We take L to denote the collection of all
Łukasiewicz paths and Ln the paths of length n. In some places, the DFQ process of a
tree is called the Łukasiewicz path of the tree.

As the name suggests, there is an interpretation of the DFQ process of a tree
t ∈ Rn as the evolving size of a queue while exploring the tree. Begin with a queue
Q0 = (∅). Then, for 0 ≤ i ≤ n−1, suppose that Qi = (w1, ..., wqi+1

) with qi = |Qi|−1.
We pop w1 from Qi, query the number of children it has, and then add those children
to the front of Qi in their lexicographical order to form Qi+1. The net change in the
size of the queue at each step is exactly ci−1, as at each step the vertex being popped
is the ith in the ordering of t. Note that step k of the DFQ process is when we explore
the vertex uk (the kth vertex in the lexicographical order) and its children are not
represented in the queue until the next step if it has any. Starting the walk at zero
and not one is just a notational choice to make future convergence results a little
cleaner. It removes a lot of “+1’s’.’
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Lemma 1.3. The mapping φ : R → L given by

φ(t) = (q0, ..., q|t|) ∀t ∈ R,

where (q0, ..., q|t|) is the DFQ process for t, is a bijection.

Proof. First, we verify that φ maps into L, which amounts to showing (i) and (ii) in
the definition as the other point is clear. The first point follows from the fact that
trees on n vertices have n−1 edges (and hence n−1 children in the context of plane
trees). For the second point, we note that ct(u1) + ... + ct(uk) ≥ k for 1 ≤ k ≤ n − 1

because u1, ..., uk+1 are all children of some vertex in {u1, ..., uk}.
Recall that two plane trees t, s are equal if and only if they are the same subset

of U. We begin by showing that φ is injective. If |t| ̸= |s|, then they do not have the
same DFQ process so suppose that |t| = |s| = n and t ̸= s. Let u∗ ∈ t ∩ s be the first
vertex in the ordering that has a child in one tree and not the other. Without loss of
generality, we may assume that this child is in t, so ct(u

∗) > cs(u
∗). If (q0(t), ..., qn(t))

and (q0(s), ..., qn(s)) are the DFQ processes of t and s respectively, the fact that u∗

was chosen to be minimal implies that qk(t) = qk(s) for all 1 ≤ k ≤ i∗ − 1, where i∗

is the place of u∗ in the ordering. Then,

qi∗(t) = qi∗−1(t) + ct(u
∗) > qi∗−1(s) + cs(u

∗) = qi∗(s).

Surjectivity follows almost immediately from the fact that qk − qk−1 = ct(uk) − 1 for
all 1 ≤ k ≤ n. Given a Łukasiewicz path q = (q0, ..., qn) we can construct a tree that
straightforwardly maps to q. Begin with t0 = {∅}. Then, inductively define ti+1 for
each 0 ≤ i ≤ n − 1 by setting ti+1 = ti ∪ {xi · 1, ..., xi · (qi+1 − qi + 1)}, where xi is
the ith element of ti in lexicographical order (note that such an element exists by the
assumption qk ≥ 0 for 0 ≤ k ≤ n− 1). One can check that φ(tn) = (q0, ..., qn).

Another discrete function that encodes plane trees is the height function. It can
be seen as a walk through the tree in lexicographical order that records the height of
the current vertex.

Definition 1.4. Let t ∈ Rn and let u0, ...un−1 be its vertices written in lexicographical
order. The height function of t, denoted by (ht(k)

n−1
k=0 , is given by ht(k) = |uk+1|.

Before we get into why the height function acutally matters, let’s first introduce
a continuous function that is related to the height function and of great importance
later on. We call this function the contour function of the tree. The formal definition
is a little confusing, I recommend looking at the example below to make sense out
of it. We informally can see the contour function as arising from a process where we
trace out the tree using a pencil that never leaves the paper and draws at a single unit
speed. When we deal with the contour function we often take an intuitive approach,
arguing with pictures and words instead of dealing with the formal objects. This just
helps us to avoid long detours with a lot of notation that end with us concluding
relatively intuitive statements. Anyways, here is the definition.

6



Definition 1.5. Let t ∈ Rn and let u0, ..., un−1 be the vertices in lexicographical order.
Set un = ∅. Let pi

0, p
i
1, p

i
2... be the interior vertices on the unique paths from ui to ui+1

for each 0 ≤ i ≤ n − 1 in the order they would be taken if travelling from ui to ui+1

in t. We define a new sequence of vertices v0, ..., v2(n−1) by inserting the pi’s between ui

and ui+1 for all 0 ≤ i ≤ n − 1 (each vertex u ∈ t appears ct(u) + 1 times in the new
sequence). We define the contour function of t, γt : [0,∞) → [0,∞) by

γ(t) = |v⌊t⌋|+ (t− ⌊t⌋)(|v⌈t⌉|− |v⌊t⌋|)

for 0 ≤ t ≤ 2(n− 1), and γ(t) = 0 for t > 2(n− 1).

∅

1 32
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k

qk

k

ht(k)

t

γt(t)

Figure 3: A tree and its many functional encodings

There is a simple way to convert between the height function and the DFQ process
of a tree. This relationship will allow us to describe the height function in terms of
sums of i.i.d. random variables when discussing Bienaymé trees later.

Theorem 1.6. Let t ∈ Rn have DFQ process (q0, ..., qn). Then, for all 0 ≤ k ≤ n− 1,

ht(k) =

∣∣∣∣{1 ≤ j ≤ k− 1 : qj = inf
j≤m≤k

qm

}∣∣∣∣ .
Proof sketch. It is clear that ht(k) = |{0 ≤ j ≤ k − 1 : uj ⪯ uk}|, so we only need to
show that

uj ⪯ uk ⇐⇒ qj = inf
j≤m≤k

qm.
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It can be observed immediately from the definition that, if t(uj) is the subtree of t
rooted at uj, then uj ⪯ uk if and only if uk ∈ t(uj), so we can instead show

uk ∈ t(uj) ⇐⇒ qj = inf
j≤m≤k

qm. (1)

Let τj = inf{m ≥ j : qm < qj}. At step j of the DFQ process we add uj’s children to the
queue and remove uj. The process only leaves the subtree t(uj) all of the children
of uj have been removed (along with any children they have). This is exactly τj. In
particular, we have that t(uj) = {um : j ≤ m ≤ τj − 1}. (1) follows immediately from
this identity.

A corollary of Theorem 1.6 is that the height function of a tree uniquely deter-
mines it. By taking the end point of all length one intervals on which the contour
function is increasing, we can recover the height process of a tree. Moreover, from
the height function we can recover the tree and from the tree we can get the con-
tour function. Hence, the contour function uniquely determines the tree as well.
Of course, one can prove this fact directly via the “pencil and paper” analogy. One
can also prove the height function encodes its tree directly by observing that, if one
knows the uk and ht(k+ 1), then there is only one possible vertex that could be uk+1

(it is a child of the ancestor of uk that is at height ht(k+1)−1). I’m being a bit hand-
wavy here, but the conclusion really is just that all three of the processes presented
here uniquely determine our trees.

1.2 BIENAYMÉ TREES

Definition 1.7. Let µ be a measure on Z≥ = {0, 1, 2, ...} with
∑∞

k=0 kµ(k) < ∞ such
that µ(1) ̸= 1. For all u ∈ U, we associate an independent random variable ξu

L
= µ. The

subset T = {u = (u1, ..., uk) ∈ U : uj ≤ ξ(u1,...,uj−1) ∀ 1 ≤ j ≤ k} is called a Bienaymé

tree with offspring distribution µ. We often write T L
= Bienaymé(µ). Collections of many

i.i.d. Bienaymé trees are sometimes called Bienaymé forests. We call a Bienaymé tree
critical if

∑∞
k=0 kµ(k) = 1, subcritical if

∑∞
k=0 kµ(k) < 1, and supercritical otherwise.

These trees are ubiquitous in probability theory and combinatorics, having been
studied as far back as the 1800’s. Those familiar with the classic Galton-Watson
martingale process may notice that these two structures are essentially the same. It
is mostly straightforward to prove from the definition that Bienymé trees are plane
trees except for the criteria that T must be finite. This fact is a corollary of a result
known by many as the fundamental theorem of Bienaymé trees. See [ANN04] for a
proof.

Theorem 1.8. Let T
L
= Bienaymé(µ) for some µ matching the above criteria. If T is

sub-critical or critical, then |T | < ∞ almost surely. In particular, T is a plane tree.
Otherwise, P(|T | = ∞) > 0.
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The independence in the variables (ξu : u ∈ U) has some nice consequences
concerning the distribution of T over the set R.

Lemma 1.9. Let t ∈ R and let T L
= Bienaymé(µ). Then,

P(T = t) =
∏
u∈t

µ(ct(u)).

Proof. Since T is a plane tree almost surely, {T = t} = ∩u∈t{ξu = ct(u)}. Using the
independence of the ξ’s we get,

P(T = t) = P

(⋂
u∈t

{ξu = ct(u)}

)
=

∏
u∈t

µ(ct(u)).

With the standard pleasantries out of the way, we can turn our attention to the
most important property of Bienaymé trees from the perspective of scaling limits.
The DFQ process of these trees is distributed like a simple random walk, and their
sizes are exactly distributed like the first time that the simple random walk hits -1.
At first glance, knowing the definition of the DFQ process, one might think that this
statement is trivially true by the definition of Bienaymé trees. However, the presence
of the stopping time in the expression below makes the claim not immediate as it
could (in theory) disturb the natural independence between the number of children
each vertex has.

Theorem 1.10. Let T L
= Bienaymé(µ), and let its DFQ process be denoted by Q. Let

(Sk : k ≥ 0) be a simple random walk with step sizes distributed like ν, where for all
k ≥ −1, ν(k) = µ(k+ 1). Then,

Q
L
= (S0, ..., Sτ),

where τ = inf{n ≥ 1 : Sn = −1}. In particular |T | L
= τ.

Proof. It suffices to just check that the vector (ct(U0), ..., ct(U|T |−1)) is distributed like a
collection of i.i.d. µ-distributed random variables, where (U0, ..., U|T |−1) is the vertices
of T written in lexicographical order. To be able to remove the random indexing, we
want {Uk = u} for 0 ≤ k ≤ |T | − 1 and u ∈ U to be measurable with respect to only
the vertices below u in the lexicographical order.

First, the set T ∩ {v ∈ U : v ≤ u}, is measurable with respect to σ(ξv : v < u).
Then, for any k ≥ 0, the event {Uk = u} ∩ {|T | > k}, being completely determined
by T ∩ {v ∈ U : v < u}, is measurable with respect to σ(ξv : v < u). The set
{Uk = u} ∩ {|T | ≤ k} is also measurable with respect to σ(ξv : v < u) for the same
reason. Combining the two facts we get that {Uk = u} is measurable with respect to
σ(ξv : v < u).
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Now, from here we can proceed via a standard induction. Let g0, ..., gk : Z≥ → Z≥
be a collection of functions for 0 ≤ k ≤ |T |− 1. Then,

E [g1(ξU0
) · · ·gk(ξUk

)]

=
∑

u0<...<uk

E
[
1{U0=u0,...,Uk=uk}g1(ξu1

) · · ·gk(ξuk
)
]

=
∑

u0<...<uk

E
[
1{U0=u0,...,Uk=uk}g1(ξu1

) · · ·gk−1(ξuk−1
)
]

E[gk(ξuk
)]

=
∑

u0<...<uk−1

E
[
1{U0=u0,...,Uk−1=uk−1}g1(ξu1

) · · ·gk−1(ξuk−1
)
]

E[gk(ξuk
)]

= E
[
g1(ξU0

) · · ·gk(ξUk−1
)
]

E[gk(ξu0
)],

where in the first equality we used the measurability we just proved and in the second
we use the independence of child distribution for fixed indices. The sum is only over
vertices in generation at most k. Applying induction completes the proof of the
independence, and as noted at the start completes the proof as a whole.

1.3 BIENAYMÉ TREE CONDITIONED TO HAVE A FIXED SIZE

Bienaymé trees are interesting structures in their standard form. However, their
ability to generalize so many canonical random tree models is what has kept them an
ongoing topic of discussion for so many years since their origins in the study of family
trees. The way we observe this generalizing property is by sampling Bienaymé trees
conditioned on their size being some parameter n ∈ N. We write T

L
= Bienaymé(n, µ)

for a random plane tree T if, for all t ∈ Rn,

P(T = t) = P(T ′ = t | |T ′| = n),

where T ′ L
= Bienaymé(µ). For the rest of this subsection, we are going to cover a vari-

ety of random tree models, and explain how they fit into the category of conditioned
critical Bienaymé trees. First, however, we need to explain why this is something that
we should be able to do.

Definition 1.11. Let M be a multiset of plane trees. We define the weight of a tree in
t ∈ U, Ω(t), to be the number of occurrences of t in M. Then, we call

zn =
∑

t∈M:|t|=n

Ω(t)

the partition function of M. For each n ≥ 1, let Tn be a random tree with distribution,

P(Tn = t) =
Ω(t)
zn

.
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For each t ∈ U , let (mk(t))∞k=0 be the number of vertices with k children for k ≥ 0. If
there exists a sequence (ak)

∞
k=1 of integers such that

Ω(t) =
∞∏
k=0

a
mk(t)
k ,

then we call the random trees (Tn)∞n=1 a simply generated family of random trees.

In many cases, simply generated trees can be described as Bienaymé trees condi-
tioned on their size. Let (Tn)∞n=1 be a family of simply generated tree, and let µx be
a measure defined by µx(k) = akx

k/f(x) for all k ≥ 0 and some x > 0. We define T x
n

for all n ≥ 1 to be a Bienaymé(n, µx).

Lemma 1.12. Let f(x) =
∑∞

k=0 akx
k and suppose that there is some x∗ > 0 such that

1 ≤ f(x∗) < ∞. Then, there exists some τ > 0 such that f(τ) = τf ′(τ).

We shall skip the proof as it not particularly instructive and generating functions
are not the topic of interest.

Theorem 1.13. Let f(x) =
∑∞

k=0 akx
k and suppose that there is some x∗ > 0 such that

1 ≤ f(x∗) < ∞. Let τ > 0 such that f(τ) = τf ′(τ) (exists from the above lemma).
Then, for all x ∈ (0, τ], Tn

L
= T x

n, where both (Tn)
∞
n=1 and (T x

n)
∞
n=1 are defined above. In

particular, there is a critical child distribution µ such that Tn
L
= Bienaymé(n, µ).

Proof. Let T ∗ L
= Bienaymé(µt). By Lemma 1.9,

P(T ∗ = t) =
∞∏
k=0

(µx(k))mk(t)

=

∞∏
k=0

(
akx

k

f(x)

)mk(t)

=

( ∞∏
k=0

a
mk(t)
k

)
(f(x))−n

(
x
∑∞

k=0 kmk(t)
)

= Ω(t)(f(x))−n
(
x
∑∞

k=0 kmk(t)
)
.

Then,

P(|T ∗| = n) =
∑

t:|t|=n

Ω(t)(f(x))−n
(
x
∑∞

k=0 kmk(t)
)
= zn(f(x))

−n
(
x
∑∞

k=0 kmk(t)
)
.

Hence,

P(T x
n = t) =

Ω(t)
zn

.
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The second statement follows the above lemma and the fact that the mean of the
child distribution µx is ∞∑

k=0

kakx
k

f(x)
=

xf ′(x)

f(x)
.

What is the takeaway of this theorem? Our claim at the beginning of this section
was that we could view many canonical random tree models as Bienaymé trees con-
ditioned on their size. This theorem just asserts that we only need to be able to view
them as simply generated trees, which is a much nicer family for this purpose. It is
fairly easy to find a weight function that results in the correct distribution for many
families of random trees. Let us finish things off by giving some examples. Verifying
the claims is not too hard and I don’t even know if I’ll cover this material, so I’m just
going to write the coefficients that give the desired tree for each example.

(i) If we set a0 = 1, a1 = 2, a2 = 1, then Tn is a uniform rooted binary tree on n

vertices.

(ii) If we set (a0 = 1, a2 = 1), then Tn is a uniform full binary tree on n vertices.

(iii) If we set (a0 = 1, ak = 1), then Tn is a uniform rooted k-ary tree on n vertices.

(iv) If we set (ak = 1 for all k ≥ 0), then Tn is a uniform rooted plane tree on n

vertices.

There is one last case that needs to be separated out on its own as we can deal
directly with the Bieanymé tree instead of the simply generated tree. The tree of
interest is the uniform random labelled tree on n vertices. Let T L

= Bienaymé(Poi(1)).
Erase the planar ordering and root, and then give T a uniformly chosen labelling
from {1, ..., |T |}. Then, for a labelled rooted tree t,

P(T = t) =
e−|t|

|t|!
,

implying that P(T = t | |T | = n) is a uniform labelled tree on n vertices (the identity
is not trivial, but can be verified without too much sweat by permuting vertices with
the same degree).
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2 REAL TREES AND THE BROWNIAN CRT

We introduce a second notion of a tree in this section, specifically
that of a real tree. These are connected metric spaces that share
metric information with combinatorial trees, but erase the meaning
of things like vertices and adjacency. We discuss how the space of
all real trees can be made into a complete separable metric space,
setting ourselves up the groundwork for how one can make sense out
of scaling limits for trees. We also cover the encoding of real trees
via continuous functions supported on a compact connected set. This
sets up a bridge between the combinatorial and the continuum via
the contour function.

2.1 THE SPACE OF ROOTED REAL TREES

As was done with combinatorial trees, we shall begin our exploration of real trees by
setting them up as formal structures. Naturally, the starting place is the definition.

Definition 2.1. A compact metric space (T, d) is called a real tree if, for all x, y ∈ T:

(i) there is a unique is isometric embedding fxy : [0, d(x, y)] → T such that fxy(0) = x

and fxy(d(x, y)) = y;

(ii) if g : [0, 1] → T is a continuous injective map with g(0) = x and g(1) = y, then
g([0, 1]) = f([0, d(x, y)]).

Despite no longer feeling like vertices in the sense that they are in a combinatorial
tree, we shall still call elements of T its vertices. The real trees we discuss in these
notes shall be rooted, meaning that each T has some distinguished vertex ρ ∈ T.
Its role shall mostly be as a constraint for the equivalence of two trees, though its
existence also allows to discuss things like height. Real trees are not considered
planar, but some results we prove later about how much branching can occur in a
real tree imply that we could define an ordering analogous to the sibling ordering
that defines plane trees. We need some more notation to go along with our new
definition.

(i) The range of the isometric embedding fxy for any x, y ∈ T shall be denoted by
[x, y]. The sets (x, y], [x, y), (x, y), [x, x], (x, x], [x, x), (x, x) are all defined
analogously.

(ii) The distance d(ρ, x) for x ∈ T is called the height of x. The segment [ρ, x] is
called the ancestral line of x.
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(iii) We define the genealogical partial ordering on T, written as ⪯, by x ⪯ y if
x ∈ [ρ, y].

(iv) The degree of a vertex x ∈ T is the cardinality of the set of components in the
metric space (T \ {x}, d). We say that y and z are in the same component of
T\{x} if they are connected in T\{x} in the topological sense. Vertices of degree
one are called leaves.

(v) For x, y ∈ T, we call the unique z ∈ T such that [ρ, x] ∩ [ρ, y] = [ρ, z] the least
common ancestor of x and y. We denote this vertex by x∧ y.

(vi) We call two real trees T1 and T2 equivalent if there is a root preserving isometry
f : T1 → T2. The set T will denote the space of all equivalence classes of real
trees. We often conflate a tree with its equivalence class.

Item (v) above contained the claim that there exists such an element. Since it
gives us a chance to get acquainted with the definition of a real tree, let’s prove this
claim.

Lemma 2.2. For every pair x, y ∈ T, there exists a unique vertex z ∈ T such that
[ρ, x] ∩ [ρ, y] = [ρ, z].

Proof. Let a = sup{b ∈ [0, d(ρ, x)] : fρx(b) ∈ [ρ, y]}, and let z = fρx(a). By the
closeness of the sets [ρ, x] and [ρ, y], we know that z ∈ [ρ, x] ∩ [ρ, y], implying that
[ρ, z] ⊆ [ρ, x] ∩ [ρ, y]. On the other hand, if z ′ ∈ [ρ, x] ∩ [ρ, y], then f−1

ρx (z
′) ∈ {b ∈

[0, d(ρ, x)] : fρx(b) ∈ [ρ, y]}, and so f−1
ρx (z

′) ≤ a. Using the fact that fρx is an isometric
embedding we can see that d(ρ, z) = a and that f|[0,a] is the unique isometric embed-
ding of [0, d(ρ, z)] into T. Hence, z ′ ∈ [ρ, z] and [ρ, x] ∩ [ρ, y] ⊆ [ρ, z]. Uniqueness is
straightforward. If [ρ, x] = [ρ, y] for any x, y ∈ T, then x ⪯ y and y ⪯ x. In particular
x = y.

There are many equivalent notions of real trees. Almost all of them use (i) (which
is called the unique geodesic condition), but (ii) (the no-loop property) could be
restated in any number of ways [Jan23]. Item (i) also is the property that asserts
connectedness. There is one common equivalent description that does not use (i)
and we shall record it because it is fun. Rather than pretend that I can say anything
about the proof, I shall simply state it and bask in its glory ([Jan23] discusses this
equivalent definition as well if you would like to learn about it).

Theorem 2.3. A compact rooted metric space (X, d) is a real tree if and only if it is
path-connected and satisfies the four-point condition :

d(x1, x2) + d(x3, x4) ≤ max {d(x1, x3) + d(x2, x4), d(x1, x4) + d(x2, x3)} ,

for all x1, x2, x3, x4 ∈ X.
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Ok, moving on. With the goal of convergence theorems in mind, we would like to
have a notion of distance between two real trees. In most cases, our particular choice
of distance function is the Gromov-Hausdorff distance. There are multiple equiva-
lent definitions of this distance,and we take the following one to be our canonical
definition. For (T1, d1) and (T2, d2) real trees, we call C ⊆ T1×T2 a (root-preserving)
correspondence between T1 and T2 if:

(i) ∀x1 ∈ T1 ∃x2 ∈ T2 such that (x1, x2) ∈ C,

(ii) ∀x2 ∈ T2 ∃x1 ∈ T1 such that (x1, x2) ∈ C, and

(iii) (ρ1, ρ2) ∈ C, where ρ1 and ρ2 are the roots of the trees T1 and T2 respectively.

The space of all correspondences between T1 and T2 is denoted by C(T1,T2). Then,
we define the Gromov-Hausdorff distance between (T1, d1) and (T2, d2) as

dGH(T1,T2) =
1

2
inf

C∈C(T1,T2)
dis(C),

where

dis(C) = sup
{
|d1(x1, y1) − d2(x2, y2)| : (x1, x2), (y1, y2) ∈ C

}
.

There is a slightly more intuitive definition of the GH distance in terms of the Haus-
dorff distance of isometric embeddings of T1 and T2 into a mutual space. This defini-
tion will be of use later down the line, and for this sake we introduce it now.

Definition 2.4. The Hausdorff distance dH between two compact sets K1, K2 of a metric
space (X, d) is defined by

inf {ϵ > 0 : K1 ⊆ Kϵ
2, K2 ⊆ Kϵ

1} ,

where Sϵ = {x ∈ X : d(x, S) ≤ ϵ}.

Lemma 2.5. For two real trees (T1, d1) and T2, d2) with roots ρ1 and ρ2 we define a
metric

d(T1,T2) = inf
φ1,φ2

(
dH(φ(T1), φ(T2))∨ d∗(φ1(ρ1), φ2(ρ2))

)
,

where the infimum is taken over all isometric embeddings of T1 and T2 and choices of
destination (X∗, d∗).

Proof. First, suppose that d(T1,T2) < r for two trees (T1, d1) and (T2, d2) and let
φ1, φ2 be isometric embeddings into a space (Z, dZ) such that dH(φ1T1, φ2T2) < r.
We define a relation C by adding all pairs of vertices (t1, t2) ∈ T1 × T2 such that
dZ(φ1(t1), φ2(t2)) < r. By the assumption at the beginning, C is a correspondance
that with dis(C) < 2r. To see this, consider two pairs of corresponding points (x1, x2)
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and (y1, y2), and suppose that d1(x1, y1) ≥ d2(x2, y2). Then, a simple application of
the triangle inequality gives

d1(x1, y1) − d2(x2, y2)

=dZ(φ1x1, φ1y1) − dZ(φ2x2, φ2y2)

≤dZ(φ1x1, φ2x2) + dZ(φ2x2, φ1y1) − dZ(φ2x2, φ2y2)

≤dZ(φ1x1, φ2x2) + dZ(φ2x2, φ1y2) + dZ(φ2y2, φ1y1) − dZ(φ2x2, φ2y2)

=dZ(φ1x1, φ2x2) + dZ(φ2y2, φ1y1),

which is strictly below 2r by definition. Hence, we can conclude that dGH ≤ d. Now
suppose that dis(C) = 2r for some correspondance C. Then, in the disjoint union of
T1 and T2 (mark all the points in T1 with a zero and in T2 with a one and then take
the union) we define a pseudometric

d∗(t1, t2) =


inf(t ′1,t ′2)∈C

(
d1(t1, t

′
1) + d2(t2, t

′
2) + r

)
, if t1 ∈ T1, t2 ∈ T2

d1(t1, t2), if t1, t2 ∈ T1

d2(t1, t2), if t1, t2 ∈ T2

.

Note that d∗(t1, t2) = r when the two vertices correspond with each other. In par-
ticular, since every vertex has a partner in the correspondance (and the roots corre-
spond), we have that dH(T1,T2) ≤ r. There are some issues with the fact that d∗ is
only a pseudometric, but simply modding out by the standad distance zero equiva-
lence relation finishes the job.

An important remark to make is that there was nothing special about the fact
that our compact metric spaces of choice were trees in any of the proof of any of
those definitions. One can extend the notion of Gromov-Hausdorff distance that we
just provided to the set of all isometry classes of compact metric spaces. We will
often make reference to this larger space containing T when working with real trees
and especially when working with real graphs. We denote it by K. The last thing
to cover about Gromov-Hausdorff space before moving on to functional encodings is
the question of completeness.

Theorem 2.6. Both (K, dGH) and (T, dGH) are complete separable metric spaces.

Proof sketch. Separability of K is not too hard to show with the correspondance def-
inition of the Gromov-Hausdorff distance. Since our metric spaces are compact, we
can find finite ϵ-covers of them for all ϵ > 0. This implies that the set of finite metric
spaces is dense in K. If we take all finite metric spaces that have only rational dis-
tances, then we get a countable dense set. We can do a very similar thing for T by
considering all real trees that branch out only finitely many times

I didn’t quite have time to type up a full argument for this proof following what
was done in class. Hopefully I can fill this in later when I have time.
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Due mostly to time constraints we have not ventured very deep into the theory of
Gromov-Hausdorff space, only presenting the results that are needed. I would just
like to remark that this is not due to lack of relevance or because the connetions end
with what has been discussed here. Deep knowledge of the theory of convergence for
metric spaces and the surrounding material has and will continue to be important to
developing the theory of graph scaling limits. I recommend taking a look at [Bur01]
to learn more about the topic, it was my main source of deeper information about
Gromov-Hausdorff convergence when preparing these notes. I also stole a couple
ideas from [Pet06].

2.2 ENCODING REAL TREES WITH FUNCTIONS

In this subsection, we argue why we can replace the study of real trees with the study
of certain types of continuous functions. As noted in the summary of this section,
this offers a bridge between the real trees of this section, and the plane trees of the
previous section. First we set up our candidates for the encodings.

Let f ∈ {g : [0,∞) → [0,∞) : supp(f) compact and connected, g(0) = 0} :=
C+

c [0,∞). We shall construct a real tree from the function. Define, for all s, t ≥ 0,

mf(s, t) = inf
min(s,t)≤r≤max(s,t)

f(r),

and df(s, t) = f(s) + f(t) − 2mf(s, t). Then, df is a metric on the set of equivalence
classes [0,∞)/Rf, where Rf = {(s, t) ∈ [0,∞) × [0,∞) : df(s, t) = 0}. Essentially,
our main theorem of this subsection asserts that the collection of all metric spaces
([0,∞)/Rf, df) for functions f ∈ C+

c [0,∞) is a rich enough set to fill our tree related
needs. For a function f ∈ C+

c [0∞), we let (Tf, dff) denote the space ([0,∞)/Rf, df)
with root ρ = [0]Rf

, the equivalence class of 0 under Rf. It is relatively straightforward
to show that Tf is in fact a compact metric space using uniform continuity of contin-
uous functions over compact intervals, however we need to still show that they are
real trees. In particulat, we would like the following to be true:

(i) For any f ∈ C+
c [0,∞), the pair (Tf, df) is a real tree.

(ii) For any two real trees (Tf, df) and (Tg, dg), dGH(Tf,Tg) = Θ(∥f− g∥∞).

(iii) For every real tree (T, d), there exists a function f ∈ C+
c [0,∞) such that (T, d) =

(Tf, df).

One way to show (i) is to observe that any metric spaces of the form (Tf, df) satisfy
the four-point condition, which implies they are all real trees via Theorem 2.3. We
shall take a more elementary approach that relies most on basic analysis techniques.
To prove (i) and (ii) we first prove the results for almost-linear functions (defined
below) and then invoke the completeness of (T, dGH) to extend to all functions in
C+

c [0,∞). A different approach to prove the same results that argues directly with the
definition of a real tree is covered in [LG05]. The third point is actually not relevant
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in these notes and so we won’t prove it. However, for the sake of completeing the
analogy with the results from the previous section we think it is worthy to mention
that (iii) is also true. An excellent constructive proof can be found in [Duq06].

Let f ∈ C+
c [0,∞). We say that f is a almost-linear if there is ϵ,∆ > 0 such that for

any n ≥ 0 f(x) = f(nϵ)+∆(x−nϵ) or f(x) = f(nϵ)−∆(x−nϵ) for x ∈ [nϵ, (n+1)ϵ].
We shall label the set of almost-linear functions in C+

c [0∞) with CL. We begin by
asserting that almost linear-function produce real trees. We can conclude this fact by
observing that the metric spaces produced by almost-linear functions are essentially
equivalent to combinatorial plane trees.

Lemma 2.7. Let f ∈ CL. Then, the function γ : [0,∞) → [0,∞) given by γ(t) =
∆−1f(ϵt) is the contour function for some plane tree tf. Moreover, (Tf, df) is isometric to
the real tree version of tf with edge lengths ∆.

We shall skip past proving Lemma 2.7 or producing a formal construction of the
real tree version of tf with edge lengths ∆, favouring an appeal to intuition (see figure
below). The idea is essentially that, as we sketch out the contour function with our
pencil and paper, we can graft on intervals of length ∆ every time that we begin an
up interval for the function. One other thing worth observing is that ϵ actually plays
no role in the structure of (Tf, df). This is not an issue and makes sense for what
we want our functional encodings to be. We can see straight from the definition of
Tf that, if we define g(x) = f(αx) for any α > 0, the mapping x 7→ αx induces an
isometry Tf → Tg.

t

f(t)

ϵ

∆

∆
2

∆
2

∆

∆
2

∆
2

Figure 4: An almost-linear function and its corresponding real tree. Two points on the
graph of the function are highlighted in blue, along with their corresponding vertices
in the real tree to highlight how the distance df matches the natural extension of
graph distance we get from sketching out the contour function. The greatest common
ancestor of the points/vertices is black in both drawings.

Lemma 2.7 covers point (i) for the case of almost-linear functions. What is left to
do is to argue that we can approximate all of the metric spaces for C+

c [0,∞) via those
generated by functions in CL.
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Lemma 2.8. CL is dense in C+
c [0,∞) under the norm ∥ · ∥∞.

Proof. It suffices to show the result for Lipschitz functions in C+
c [0,∞) as they are

dense in the set C+
c [0,∞). Let f ∈ C+

c [0,∞) be C-Lipschitz. Let ∆n = C and ϵn =
(S− I)n−1, where S = sup supp(f) and I = inf supp(f). Define recursively

Pn(j) =

{
+1, if f(jϵ+ I) ≥ fn(jϵ+ I)

−1, otherwise
.

Finally, we set

fn(t) =

(n−1)∑
j=0

Pn(j)∆n

(
(t− jϵ)+ ∨ ϵ

)
−

fn(S)(∆nϵn)−1∑
j=0

∆n

(
(t− S) − jϵ)∨ ϵ

)
.

The second sum exists only to make sure that the function is in C+
c [0,∞) as promised,

it disappears in the limit. We claim that ∥f − fn∥∞ ≤ 2∆nϵn. We can proceed via
induction. Suppose that supx∈[I,kϵ+I] |fn(x) − f(x)| ≤ 2∆nϵn for some 0 ≤ k < n − 1.
Then, in particular |fn(kϵ+ I) − f(kϵ+ I)| ≤ 2∆nϵn. There are two cases to consider.
case 1: f(kϵ + I) ≥ fn(kϵ + I). In this case the function fn increases on the next
interval. Since |f(t) − f(kϵ+ I)| ≤ C(t− kϵ− I), we have that

sup
t∈[kϵ+I,(k+1)ϵ+I]

(f(t)−fn(t)) ≤ f(kϵ+I)+C(t−kϵ−I)−fn(kϵ+I)−C(t−kϵ−I) ≤ 2∆nϵn,

and

sup
t∈[kϵ+I,(k+1)ϵ+I]

(fn(t) − f(t)) ≤ f(kϵ+ I) + ∆nϵn − fn(kϵ+ I) − (−∆nϵn) ≤ 2∆nϵn.

In particular, we have using the assumption that supx∈[I,(k+1)ϵ+I] |fn(x)−f(x)| ≤ 2∆nϵn.
case 2: f(kϵ+ I) < fn(kϵ+ I). This case goes almost identically to the first case so we
shall omit this. We note that this induction actually extends to include times above
S without changing anything as the second sum defining fn(t) is only empty when
fn(S) > 0 = f(S). Thus, the proof is done as ∆nϵn → 0 as n → ∞.

Combining the previous lemmas we can conclude what we wanted to show.

Theorem 2.9. The two claims stated at the beginning of the section hold.

(i) For any two real trees (Tf, df) and (Tg, dg), dGH(Tf,Tg) ≤ 2∥f− g∥∞.

(ii) For any f ∈ C+
c [0,∞), the pair (Tf, df) is a real tree.

Proof. (i) can be proven using the correspondance definition of the Gromov-Hausdorff
distance (we have not yet shown that the metric spaces are trees, but recall that we
can define the GH-distance for any two compact metric spaces). Let

C =
{
([x]Rf

, [y]Rg) : ∃t ≥ 0 such that t ∈ [x]Rf
, t ∈ [y]Ry

}
.
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It can be observed easily that this is a root-preserving correspondence. Let (x1, y1), (x2, y2) ∈
C (we are supressing the [·]Rf

now for clarity). Then, there exists s, t ≥ 0 such that

|df(x1, x2) − dg(y1, y2)| ≤ |f(s) − g(s)|+ |f(t) − g(t)|+ 2|mf(s, t) −mg(s, t)|.

Without loss of generality we can assume that mf(s, t) ≥ mg(s, t). By the continuity
of the two functions and the fact that [s∧ t, s∨ t] is closed there is some p ≥ 0 such
that mg(s, t) = g(p). Then,

2|mf(s, t) −mg(s, t)| ≤ 2(f(p) − g(p)) ≤ 2∥f− g∥∞.

Altogether, we get that

dGH(Tf,Tg) ≤
1

2
dis(C) ≤ 2∥f− g∥∞.

We can easily prove (ii) using (i), the density of CL in C+
c [0,∞), and the fact that T

is closed in K.
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3 SCALING LIMITS OF RANDOM WALKS AND BIENAYMÉ TREES

We finally prove some scaling limits in this section. We begin with
building up the theory of scaling limits for random functions, ex-
plaining the topological backing behind it and proving Donsker’s
Theorem. Using the theorem and results from the previous two sec-
tions, we prove scaling limits for the height function of both condi-
tioned and un-conditioned critical Bienaymé trees. As a corollary, we
obtain a scaling limit in the Gromov-Hausdorff topology for critical
conditioned trees to a random real tree called the Brownian CRT. It
is defined to be a real tree that is encoded by a unit length Brownian
excursion.

3.1 RANDOM FUNCTIONS IN C[0, 1] AND DONSKER’S THEOREM

I borrowed a lot of the material in this subsection from [Bil13]. In order to dis-
cuss scaling limits, we require some results connecting random walks and Brownian
motion. We also desire some good tools to explore the convergence of random func-
tions with our functional encodings of real trees in mind. Our setup in this section
is a sequence of i.i.d. random variables (ξn)n≥1 with mean 0 and variance 1. Let
Sk =

∑k
i=1 ξi. The sequence of random functions that we consider is (Wn)n≥1, where

Wn : [0, 1] → R is such that

Wn(t) =
S⌊nt⌋ + (nt− ⌊nt⌋)ξ⌈nt⌉√

n
. (2)

Donsker’s Theorem essentially asserts that the functions Wn(t) converge towards
Brownian motion on the interval [0, 1].

Theorem 3.1 (Donsker’s Theorem).(
Wn(t) : t ∈ [0, 1]

)
L
−→ (

B(t) : t ∈ [0, 1]
)
,

as n → ∞ in the space (C[0, 1], ∥·∥∞), where (B(t) : t ≥ 0) is standard one dimensional
Brownian motion that starts with B(0) = 0.

While we can intuitively view this theorem as being a sort of generalization
of the central limit theorem (the sequence (Wn(1)/

√
n)n≥1 is exactly the sequence

(Sn/
√
n)n≥1), we need to recall some topological tools to be able to complete the

proof. This increased difficulty is due to the fact that the claimed convergence is
in the space C[0, 1] rather than R. Specifically, we desire an equivalence between
convergence in distribution and convergence of finite dimensional marginals for con-
tinuous functions.
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3.1.1 CONVERGENCE OF MEASURES ON C[0, 1]

Let us begin by dragging some old dusty theorems out from our attic.

Definition 3.2. Let (X, τ) be a Hausdorff space and let P be the space of all probability
measures on X equipped with the Borel sigma-algebra. A set S ⊆ P is called tight if for
all ϵ > 0 there is a compact set K(ϵ) such that supµ∈S µ(X \ K(ϵ)) < ϵ.

Theorem 3.3 (Prokhorov’s Theorem). Let (X, d) be a separable metric space and let P
be the set of all probability measures on X with the Borel sigma-algebra. Then, S ⊆ P
is tight if and only if it is pre-compact.

An almost direct consequence of Prokhorov’s Theorem is worth recording.

Corollary 3.4. Let (µn)
∞
n=1, µ be probability measures on (C[0, 1], ∥ · ∥∞). If the finite-

dimensional marginals of (µn)
∞
n=1 converge in distribution to the finite-dimensional

marginals of µ, and if (µn)
∞
n=1 is tight, then µn

L
−→ µ as n → ∞.

Proof. Recall that, for probability measures µ and ν on [0, 1], µ = ν if and only if
πt1,...,tkµ = πt1,...,tkν for 0 ≤ t1 ≤ ... ≤ tk ≤ 1, where πt1,...,tk is the projection onto the
coordinates t1, ..., tk (this can be observed by a standard π− λ system proof).

Let (µnk
)∞k=1) be a subsequence of (µn)

∞
n=1). By pre-compactness, this sequence

has a convergent subsequence, tending to some limit µ∗. By the finite-dimensional
marginals convergence and the fact from the previous paragraph, it holds that µ∗ =
µ. Hence, every subsequence of (µn)

∞
n=1 has a further subsequence that converges to

µ. It is well known that this implies that µn
L
−→ µ as n → ∞.

Theorem 3.5 (Arzelà-Ascoli Theorem). A set S ⊆ C[0, 1] is pre-compact if and only if
supf∈S |f(0)| < ∞ and limδ→0 supf∈Swf(δ) = 0, where wf(δ) = sup|s−t|<δ |f(s) − f(t)| for
all 0 < δ < 1.

The function wx is called the modulus of continuity. For our purposes, we need a
translation of tightness into some criteria that are more easily verified by computa-
tions. We can begin by deriving a pair of conditions that mirror the pre-compactness
definition given by the Arzelà-Ascoli Theorem.

Lemma 3.6. A sequence of measures (µn)
∞
n=1 on (C[0, 1], ∥ · ∥∞) is tight if and only if

the following two conditions hold:

(i) for all ϵ > 0 there is N, t ≥ 0 such that µ({x : |x(0)| > t}) ≤ ϵ for all n ≥ N,

(ii) for all ϵ > 0, limδ→0 lim supn→∞ µn({x : wx(δ) ≥ ϵ}) = 0.

Proof. Suppose that the sequence is tight. Choose some K ⊆ C[0, 1] and t ≥ 0 such
that µn(K) ≥ 1 − η. Then, by compactness, K ⊆ {x : |x(0)| ≤ t} and K ⊆ {x :
wx(δ) ≤ ϵ} for all n ≥ 1 and δ > 0 chosen sufficiently small by the Arzelà-Ascoli
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Theorem. It quickly follows that µn({x : |x(0)| ≥ t}) ≤ η. Morover, we can see that
limδ→0 supn≥1 µn({x : wx(δ) ≥ ϵ}) = 0 by choosing K appropriately.

For the reverse direction, we may instead show the result under the assumption
(ii)’: for all η, ϵ > 0 that µn({x : wx(δ) ≥ ϵ}) ≤ 1 − η for all n above some chosen
N ≥ 0.

Suppose that (i) and (ii)’ hold for N ≥ 0. We claim that each of the individual
measures µ1, ..., µN are tight.

Since C[0, 1] is separable, we can find for each k ≥ 0 a collection of balls of
radius k−1, A1, ..., A

(k)
nk such that µ1(∪nk

i=1A
(k)
i ) ≥ 1 − ϵ2−k. The closure K of the set

∩∞
k=1 ∪

nk

i=1 A
(k)
i has measure µ1(K) ≥ 1− ϵ and is compact.

Returning back to the proof, a simple application of the union bound proves that
the collection µ1, ..., µN is tight. This implies that the inequalities from (i) and (ii)’
hold for this collection too. In particular, this allows us to assume that N = 1 in (i)
and (ii)’. Choose some t ≥ 0 such that µn({x : |x(0)| ≤ t}) ≥ 1 − ϵ for all n ≥ 1 and
choose δk such that µn({x : wx(δk) < k−1}) ≥ 1− ϵ2−k for all n ≥ 1. Then, if we set K
to be the closure of

({x : |x(0)| ≤ t}) ∩
∞⋂
k=1

{
x : wx(δk) < k−1

}
,

we have that µn(K) ≥ 1 − 2ϵ for all n ≥ 1. By the Arzelà-Ascoli Theorem K is
compact.

In order to do probabilistic computations cleanly we need to be able to work with
a nicer form of the modulus of continuity than is provided via its definition. Our final
lemma covers this for us. Afterwards, we are left with criteria for weak convergence
that are much more easily verified.

Lemma 3.7. Suppose that 0 = t0 ≤ ... ≤ tk = 1 is such that min1≤i≤k(ti − ti−1) ≥ δ.
Then, for any x ∈ C[0, 1],

wx(δ) ≤ 3 max
1≤i≤k

sup
ti−1≤t≤ti

|x(t) − x(ti−1)|,

and

µ({x : wx(δ) ≥ 3ϵ}) ≤
k∑

i=1

µ

({
x : sup

ti−1≤t≤ti

|x(t) − x(ti−1)| ≥ ϵ

})
for any measure µ on C[0, 1].

Proof. The first inequality is a simple triangle inequality argument. Let

M = max
1≤i≤k

sup
ti−1≤t≤ti

|x(t) − x(ti−1)|.
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If |s− t| ≤ δ, then they are either in adjacent intervals or the same interval. Suppose
that s, t ∈ [ti−1, ti] for some chosen i. Then,

|x(s) − x(t)| ≤ |x(s) − x(ti−1)|+ |x(t) − x(ti−1)| ≤ 2M.

Suppose that s ∈ [ti−1, ti] and t ∈ [ti, ti+1] for some chosen i. Then,

|x(s) − x(t)| ≤ |x(s) − x(ti−1)|+ |x(ti−1) − x(ti)|+ |x(t) − x(ti)| ≤ 3M.

The second inequality follows from a union bound.

3.1.2 BACK TO DONSKER’S THEOREM

Equipped with Corollary 3.4, proving Donsker’s Theorem is as easy as verifying the
convergence for finite-dimensional marginals and the tightness condition.

Lemma 3.8. Suppose that (Wn)
∞
n=1 is defined as in (2). If

lim
x→∞ lim sup

n→∞ x2P
(

max
1≤k≤n

|Sk| ≥ x
√
n

)
= 0,

then the sequence (Wn)
∞
n=1 is tight.

Proof. We proceed by showing the Arzelà-Ascoli conditions hold in Lemma 3.6. Con-
dition (i) is immediate as Wn(0) = 0 for all n ≥ 1, so we only need to verify the
condition on the modulus of continuity for an arbitrary ϵ > 0,

lim
δ→0

lim sup
n→∞ P(wx(Wn, δ) ≥ ϵ) = 0.

Let = m0 ≤ ... ≤ mk = n, and consider times ti =
mi

n
. Applying Lemma 3.7 we get

that

P(w(Wn, δ) ≥ 3ϵ) ≤
k∑

i=1

P
(

sup
ti−1≤t≤ti

|Wn(t) −Wn(ti−1)| ≥ ϵ

)
whenever δ ≤ mi−mi−1

n
for all 1 ≤ i ≤ k. The chosen times are important because, by

definition, Wn(ti) = Smi
/
√
n. Thus,

sup
ti−1≤t≤ti

|Wn(t) −Wn(ti−1)| =
1√
n

max
mi−1≤j≤mi

|Sj − Smi−1
|,

and

P(w(Wn, δ) ≥ 3ϵ) ≤
k∑

i=1

P
(

1√
n

max
mi−1≤j≤mi

|Sj − Smi−1
| ≥ ϵ

)

=

k∑
i=1

P
(

max
0≤j≤mi−mi−1

|Sj| ≥
√
nϵ

)
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for appropriately chosen (mi)
k
i=1 to suit the conditions on δ (the second equality is

a consequence of the ξn’s being i.i.d. ). This bound leaves us with a much more
familiar expression to deal with. First, we need to finalize our choices of parameters
though.

Let m = ⌈nδ⌉, let k = ⌈δ−1⌉, and let mi = 2im for each 0 ≤ i ≤ k. Then,
mi −mi−1 = m for all i and (mi −mi−1)/n → 2δ > δ as n → ∞.

With these chosen parameters the above expression becomes

P(w(Wn, δ) ≥ 3ϵ) ≤ δ−1P
(

max
0≤j≤2m

|Sj| ≥ ϵ

√
m

δ

)
= 2 · (2δ)−1P

(
max

0≤j≤2m
|Sj| ≥ ϵ

1√
2δ

√
2m

)
=

2

ϵ2
x2P

(
max

0≤j≤2m
|Sj| ≥ x

√
2m

)
,

where we set x = ϵ(2δ)−1/2. Note that, as δ → 0, x → ∞. From here, applying the
assumption is enough to yield condition (ii) in Lemma 3.6, which proves tightness.

We are now ready to prove Donsker’s Theorem, but first let us quickly recall the
properties that characterize Brownian motion.

Definition 3.9. One dimensional Brownian motion is a real-valued stochastic process
(B(t) : t ≥ 0) that satisfies the following properties:

(i) B(0) = 0.

(ii) If t0 < t1 < ... < tn, then B(t0), B(t1)−B(t0), ..., B(tn)−B(tn−1) are independent.

(iii) If s < t, then B(s+ t) − B(s)
L
= N(0, t− s).

These properties need to be shown for the limit of the finite-dimensional marginals
of (Wn)

∞
n=1 to complete the proof. It is enough to show that, for any collection of

times 0 = t0 ≤ ... ≤ tk for some k ≥ 0,

(Wn(t1) −Wn(t0), ...,Wn(tk) −Wn(tk−1))
L
−→ (X1, ..., Xk),

where the Xi’s are independent with Xi
L
= N(0, ti − ti−1). This, along with tightness,

is enough to complete the proof.

Theorem (Donsker’s Theorem). Let (ξn)n≥1 be a sequence of i.i.d. random variables
with mean 0 and variance 1. Let Sk =

∑k
i=1 ξi. Define random functions (Wn)n≥1 where

Wn(t) =
S⌊nt⌋ + (nt− ⌊nt⌋)ξ⌈nt⌉√

n
.
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Then, (
Wn(t) : t ∈ [0, 1]

)
L
−→ (

B(t) : t ∈ [0, 1]
)
,

as n → ∞ in the space (C[0, 1], ∥·∥∞), where (B(t) : t ≥ 0) is standard one dimensional
Brownian motion that starts with B(0) = 0.

Proof. Let t ≥ s ≥ 0. Wn(s) = S⌊ns⌋/
√
n + Xn and Wn(t) − Wn(s) = (S⌊nt⌋ −

S⌊sn⌋)/
√
n + Yn, where Xn and Yn are random variables that tend to 0 almost surely

as n → ∞. Basic properties of random walks assert that S⌊ns⌋ and (S⌊nt⌋ − S⌊sn⌋) are
independent. By the central limits theorem and the continuous mapping theorem, we
get that Wn(s)

L
−→ X and Wn(t) −Wn(s)

L
−→ Y, where X

L
= N(0, s) and Y

L
= N(0, t− s)

are independent. The general case is similar, and so we can move on to tightness. By
Etemadi’s inequality (see remark below if you are unfamiliar),

x2P
(

max
0≤k≤n

|Sk| ≥ x
√
n

)
≤ 3x2 max

0≤k≤n
P
(
|Sk| ≥ x

√
n/3

)
.

Let k∗(x) be a constant depending on x chosen such that P(|Sk| ≥ x
√
k/3) ≤ P(N(0, 1) ≥

x/3) + x−3 for all k∗ ≤ k. Then, by Markov’s inequality,

3x2 max
k∗(x)≤k≤n

P
(
|Sk| ≥ x

√
n/3

)
≤ 34E|N(0, 1)|

x
= ox(1)

for any n ≥ 1. In particular,

3x2 lim sup
n→∞ max

k∗(x)≤k≤n
P
(
|Sk| ≥ x

√
n/3

)
= ox(1)

Then, for 1 ≤ k < k∗ Chebyshev’s inequality gives

3x2 lim sup
n→∞ max

0≤k<k∗
P
(
|Sk| ≥ x

√
n/3

)
≤ lim sup

n→∞
33k∗

n
= 0

for any x. Altogether, this proves tightness by Lemma 3.8.

Remark. Since I had never seen it before, I will present Etemadi’s inequality (a pretty
tidy tool to have in your kit in my opinion). Let (ξn)

∞
n=1 be a sequence of i.i.d.

random variables, let (Sn)
∞
n=0 be the partial sum of the first n ξ’s, and let t ≥ 0. Then,

Etemadi’s inequality states that

P
(

max
1≤k≤n

|Sk| ≥ 3t

)
≤ 3 max

1≤k≤n
P(|Sk| ≥ t).

With it, you can prove a weaker form of Kolmogorov’s maximal inequality (one still
strong enough to prove the strong law of large numbers though).

Remark. An entirely equivalent argument with A replacing 1 proves Donsker’s Theo-
rem on all compact sets of [0,∞), and hence proves that the result holds in the space
C[0,∞) under the topology of uniform convergence on compact sets.
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3.2 SKOROKHOD SPACE

The question motivating the material we cover in this subsection is whether or not
the convergence result of Donsker’s Theorem can be extended to the far simpler
sequence of functions for 0 ≤ t ≤ 1,

Jn(t) = S⌊nt⌋ =

⌊nt⌋∑
j=1

ξj ∀0 ≤ t ≤ 1.

We should expect that Jn and Wn behave similarly, but in order to verify it we need to
be able to talk about the convergence of random functions that are not continuous.
Specifically, we study the set of all functions f : [0, 1] → R such that

(i) For all 0 ≤ t < 1, lims↓t f(s) = f(t).

(ii) For all 0 < t ≤ 1, lims↑t f(s) exists.

Many know these functions by the name of càdlàg functions (I will write cadlag with-
out the accents because I am lazy). We shall denote the space of all such functions by
D[0, 1]. So, can we just argue our limits in the space (D[0, 1], ∥ · ∥∞) and then move
on to the next section?

The answer is no. The metric space (D[0, 1], ∥ · ∥∞) is not very good for con-
vergence. Specifically because functions with jump discontinuities that look almost
identical can still be very far with respect to ∥ · ∥∞. This breaks properties like sepa-
rability, which we leaned on for our weak convergence theory. For an example look
no further than functions like 1[an,1](x) for a sequence (an)

∞
n=1 in R such that an → a

as n → ∞. If we are going to place a metric on functions with jump discontinuities
such that the underlying metric space has nice characteristics, it should be the case
that these functions to converge to 1[a,1](x) as n → ∞. So how do we remedy this
situation? It is instructive to go back to the drawing board a bit and think about the
properties that we want our metric d on D[0, 1] to have. Here are some relatively
reasonable desires:

(i) d encodes convergence of functions in D[0, 1] in a way that allows convergence
of sequences of functions like the example just mentioned above.

(ii) (D[0, 1], d) is a complete separable metric space.

(iii) The restriction of d to the space C[0, 1] is equivalent to ∥ · ∥∞.

(iv) If ∥xn − x∥∞ → 0 as n → ∞ for (xn)∞n=0 a sequence in D[0, 1], then d(xn, x) → 0

as n → ∞.

(v) We can develop some theorems about d analogous to the Arzelà-Ascoli Theorem
from the previous section.

The last point is probably the most confusing. The reason that we want this point to
be true is that, without it, we would not have nice ways to prove tightness. Finding a
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metric that satisfies all of the above points seems like it may be a bit hard, but a fairly
natural choice of d ends up giving us what we need. The idea is to view the domain
[0, 1] as being time moving forward, and to allow ourselves a very light amount of
control over how fast time moves for each function.

Definition 3.10. Let Λ be the set of all strictly increasing continuous functions from
[0, 1] onto itself. Then, we define the Skorokhod distance between two functions x, y ∈
D[0, 1] to be given by

dS(x, y) = inf
λ∈Λ

(max {∥λ− I∥∞, ∥x− yλ∥∞}) ,

where I : [0, 1] → [0, 1] is the identity function, and yλ(t) = y(λ(t)) for all 0 ≤ t ≤ 1.
The pair (D[0, 1], dS) is called Skorokhod space.

A well known fact about cadlag functions is that they only have countably many
jumps and only finitely many jumps above any height ϵ > 0. This fact implies that
cadlag functions are bounded, and hence the Skorokhod distance is always finite. We
mention this just as a light sanity check for the definition.

For this subsection we are going to skip past the proofs and present the results
that are true. Do not consider this a proper rigourous exploration of Skorokhod
space, but instead as just a brief introduction to make the phrase less frightening
when encountered in the wild. To see much full explanations, I would recommend
looking at [Bil13, Ker22]. They were both excellent references for me when I was
trying to undestand the concepts.

Most of the properties in (i)-(v) hold for dS, but there is one small modification
we need to make in order to have (ii) be true. As written, the sequence of indicators
1[0,2−n)(x) still does not converge as n → ∞. You can check this by observing that any
limit f of the sequence must have f(x) = 0 for all x ∈ (0, 1], and then comparing this
with the fact that for any λ ∈ Λ there is some x ∈ (0, 1]) such that 1[0,2−n)(λ(x)) =
1. The fix for this lack of completeness is to put a different condition on the time
function λ. The second metric is given by

d◦
S(x, y) = inf

λ∈Λ
(max{∥λ∥◦, ∥x− yλ∥∞}) ,

where

∥λ∥◦ = sup
0≤s<t≤1

∣∣∣∣log
(
λ(t) − λ(s)

t− s

)∣∣∣∣ .
The two metrics dS and d◦

S are equivalent. That is a sequence in D[0, 1] converges
with respect to one if and only if it does with respect to the other (a stronger condition
that is true is that they correspond to the same topology). Moreover, the metric space
(D[0, 1], d◦

S) is complete and separable (under the metric dS we still have separability,
just not completeness). For this second equivalent metric, all of the points (i)-(v)
hold. The last of the five items that needs to be touched on is the last, (v). Rather
than
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Let Γ(δ) = {(t1, ..., tk) : 0 ≤ t0, ..., tk ≤ 1, min0≤i≤k(ti − ti−1) > δ}. Then, for
0 < δ < 1 we define

w ′
x(δ) = inf

(ti)∈Γ(δ)
max
1≤i≤k

sup
s,t∈[ti−1,ti)

|x(s) − x(t)|.

Instead of just taking a supremum over the whole interval like with the modulus for
C[0, 1], we now allow ourselves to consider it over many small intervals. It is easy
to see by taking the boundaries of the parition to be the points of the largest jump
discontinuities that w ′

x can be much smaller thatn wx for functions in D[0, 1]. Our
compactness characterization can be phrased in terms of this new w ′

x function.

Theorem 3.11. Let S ⊆ D[0, 1]. Then S is compact with respect to the Skorokhod
topology if and only if

(i) supx∈S ∥x∥∞ < ∞.

(ii) limδ→0 supx∈Sw
′
x(δ) = 0.

Now that we have successfully extended our ideas about C[0, 1] to D[0, 1], we
need to say a couple things about measures on D[0, 1]. Specifically, we need to
know about the relationship between a measure on D[0, 1] and its finite dimensional
marginals. The first thing to remark is that a coordinate projection πt for some
0 < t < 1 can is continuous at a function x ∈ D[0, 1] if and only if the funciton is itself
continuous at that point. This can be verified by appealing to the definition of the
Skorokhod metric. This means that the question of measurabiltiy for the mappings
is not even immediate. One can use the fact that the points of discontinuity for a
function in D[0, 1] form a Lebesgue measure zero set to argue that

∫t+ϵ

t
x(s) ds is

continuous for any ϵ > 0 and hence measurable. Taking the limit as ϵ → 0 yields
measurability for the coordinate projections. There main question is whether the
coordinate projections form a separating class, i.e., whether measures with the same
finite dimensional marginals are the same. This assertion is true, and leads us to a
modified version of our characterization of weak convergence for C[0, 1].

Theorem 3.12. Let (µn)
∞
n=0 be a sequence of probability measures on D[0, 1], and µ a

measure on D[0, 1]. Let Tµ = {0 ≤ t ≤ 1 : µ({x : x(t) ̸= lims↑t x(s)}) = 0}. Then, if
πt1,...,tkµn

L
−→ πt1,...,tkµ as n → ∞ for all t1, ..., tk ∈ Tµ and (µn)

∞
n=0 is tight, then µn

L
−→ µ

as n → ∞.

There is a lot more to say about the theory of weak convergence in D[0, 1], but
we have at least arrived at some analogous statements to those at the very beginning
of the section. The finite dimensional marginal argument for our modified Donsker’s
Theorem carries over perfectly from the previous subsection. The tightness needs
some more work that we do not have the time to get into, but to be able to use it
later we conclude by presenting our second version of Donsker’s Theorem.
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Theorem 3.13. Let (ξn)
∞
n=0 be a sequence of i.i.d. random variables with mean 0 and

variance 1. Then, (Jn(t) : 0 ≤ t ≤ 1)
L
−→ (B(t) : 0 ≤ t ≤ 1) as n → ∞ in (D[0, 1], d◦

S),
where Jn is defined as at the beginning of this subsection and B is standard one dimen-
sional Brownian motion.

3.3 CONVERGENCE OF THE HEIGHT PROCESS FOR BIENAYMÉ FORESTS

We now have everything we need to start exploring relationships between random
combinatorial trees and random real trees. In this subsection, we start by showing
that the height process of a critical Bienaymé tree converges to a Brownian excur-
sion (see remark below). Let (Tn)

∞
n=1 be a sequence of independent Bienaymé(µ)

distributed random variables for some critical offspring distribution µ. Through-
out the rest of this section we assume that all child distributions are critical. Let
Xi = |T1| + ... + |Ti| for all i ≥ 1. We define the height process of the forest by setting
Hk = hTi(k − Xi−1) for all Xi−1 ≤ k < Xi (recall that the height process of a tree t
is defined on 0, ..., |t| − 1). Since the height process visits zero only once, the height
process encodes the whole forest.

Before getting to the main theorem let’s pause to address why the height function
is the one we need to analyze. Our end goal is to prove the convergence of Bienaymé
trees (specifically conditioned ones) to the Brownian CRT. To do this with Theorem
2.9, we need to show that the contour function of the tree converges to a Brown-
ian excursion in distribution. We study the height function instead of the contour
function is that the height function enjoys a nice connection with the DFQ process,
which is distributed like a simple random walk for Bienaymé trees. Extending the
result to include convergence of contour functions does not take much extra work.
Of course, the desire to instead study the height function is what leads us to explore
the convergence in Skorokhod space rather than (C[0, 1], ∥ · ∥∞).

Remark. A Brownian excursion is, informally, a Brownian motion that is conditioned
to be non-negative and takes the value 0 at time 1. This event of course has proba-
bility zero of occurring so we should be more careful than this. There are many legal
ways to generate such stochastic processes, but one simple one goes as follows: Let
τ1, τ2 > 0 be such that B(τ1) = B(τ2) = 0, B(t) ≥ 0 for all τ1 < t < τ2 and τ2 − τ1 ≥ 1

for some Brownian motion (B(t) : t ≥ 0). These times exist almost surely as Brow-
nian motion is recurrent with expected return time to zero being unbounded. Then,
set e(t) = B((τ2 − τ1)t + τ1)/

√
τ2 − τ1 for each 0 ≤ t ≤ 1. This gives us a stochastic

process with the correct characteristics.

Much of the work on combinatorial trees from Section 1 can be summarized with
the following lemma.

Lemma 3.14. For all n ≥ 0, Hn = |{0 ≤ k ≤ n − 1 : Sk = infk≤j≤n Sj}|, where (Sn)
∞
n=0

is a simple random walk with jump distribution ν defined by ν(k) = µ(k + 1) for all
k ≥ −1.
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Proof. Note that for Xi−1 ≤ k < Xi, the indices in {0 ≤ k ≤ n − 1 : Sk = infk≤j≤n Sj}

must be at least Xi−1. This is because each new tree is marked by a new global
minimum in the random walk (Sn)

∞
n=0. In particular, the kth tree ends where the

random walk first visits the state −k. Thus, Hn coincides with hti for Xi−1 ≤ k < Xi.
From here, applying Theorems 1.6 and 1.10 complete the proof.

Here is the main theorem.

Theorem 3.15. (H⌊nt⌋/
√
n : t ≥ 0)

L
−→ (2Z(t)/σ : t ≥ 0) as n → ∞, where σ2 is the

variance of µ, and (Z(t) : t ≥ 0) is a reflected Brownian motion. The convergence occurs
in D[0,∞).

Remark. Reflected Brownian motion is B(t) − inf0≤s≤t B(s) for each t ≥ 0, where
(B(t) : t ≥ 0) is standard one dimensional Brownian motion. It has been study as far
back as Lévy, and it is known to be distributed as |B(t)|.

Much of the heavy lifting in the proof of Theorem 3.15 is done by a couple of
technical lemmas about random walks and a nice concentration inequality for the
height process. We separate these pieces into their own pieces and then quickly
explain why this completes the proof at the end. There exists proofs for the statement
in full generality [Ald93], but they are not fully optimized to be able to present in a
reasonable amount of time. For this proof we make one simplifying assumption that
allows for the proving of the aforementioned concentration inequality we need. We
assume that there is some t > 0 such that

∑
k≥0 exp(tk)µ(k) < ∞, i.e., we assume

that the moment generating function exists on some interval in the postive reals.
A few new pieces of notation need to be introduced before continuing. For the

random walk defined in Lemma 3.14, Mn := sup0≤k≤n Sk and In := inf0≤k≤n Sk. For
all n ≥ 0, we define the time reversed random walk starting from n by Ŝn

k := Sn−Sn−k

for all 0 ≤ k ≤ n. The duality principle for random walks asserts that (Ŝn
k : 0 ≤ k ≤

n)
L
= (Sk : 0 ≤ k ≤ n). For any sequence x = (xn)

m
n=0 (m can be ∞), we define

Φn(x) =

∣∣∣∣{1 ≤ k ≤ n : xk = sup
0≤j≤k

xj

}∣∣∣∣ .
Note that we do not count k = 0 in the size of the set. We can rewrite our expression
for Hn in terms of our new notation.

Lemma 3.16. Hn = Φn(Ŝ
n) for all n ≥ 0.

Proof. Indeed,

Sk = inf
k≤j≤n

Sj ⇐⇒ Sn − Sk = Sn − inf
k≤j≤n

Sj

⇐⇒ Ŝn
n−k = sup

k≤j≤n

(Sn − Sn−(n−j))

⇐⇒ Ŝn
n−k = sup

0≤j≤n−k

Ŝn
j .
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Thus, the cardinalities defining both functions (using the definition from Lemma
3.14) are the same.

Lemma 3.17. Let (τn)∞n=0 be a sequence of stopping times defined inductively by setting
τ0 = 0 and τj = inf{n > τj−1 : Sn = Mn} for all j > 0. The sequence random variables
(Sτj − Sτj−1

)∞j=1 are i.i.d. with distribution given by

P(Sτ1 − Sτ0 = k) = ν[k,∞) = µ[k+ 1,∞)

for all k ≥ 0.

Proof. The independence property is and immediate consequence of the Markov
property. Let R = inf{n ≥ 1 : Sn = 0} and let k ∈ Z. Let (σn)

∞
n=0 be the times at

which the random walk is at either the state 0 or state k. The sequence (Sσn)
∞
n=0 is

a symmetric Markov chain on the state space {0, k}. In particular, ET0,0 = 2 as the
stationary distribution is uniform. Hence, we expect to visit k once before returning
to 0. Altogether, this shows that

E

[
R−1∑
n=0

1{Sn=k}

]
= 1. (3)

Now, note that τ1 ≤ R. If S1 > 0, then τ1 = 1, and R > 1. If S1 < 0, then τ1 is the
first time that the random walk is ≥ 0, which contains the event that the random
walk returns to the origin. Moreover, since negative jumps of the walk are at most
−1, the portion of the random walk on (τ1, R) is all positive integers and the portion
on (1, τ1) is all negative integers. In particular, if the value k defining R is taken to be
nonpositive, then by (3),

E

[
τ1−1∑
n=0

f(Sn)

]
=

∞∑
i=0

f(−i)E

[
R−1∑
n=0

1{Sn=−i}

]
=

∞∑
i=0

f(−i) (4)

for any function f : Z → Z≥. Continuing,

E[f(Sτ1)] =

∞∑
n=0

E
[
f(Sn+1)1{n<τ1}∩{Sn+1≥0}

]
=

∞∑
n=0

∞∑
j=0

E
[
f(Sn + j)ν(j)1{n<τ1}∩{Sn+j≥0}

]
=

∞∑
j=0

ν(j)E

[ ∞∑
n=0

f(Sn + j)1{n<τ1}∩{Sn+j≥0}

]

=

∞∑
j=0

ν(j)E

[
τ1−1∑
n=0

f(Sn + j)1{Sn+j≥0}

]
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=

∞∑
j=0

∞∑
i=0

ν(j)f(j− i)1{j≥i} (by (4))

=

∞∑
m=0

∞∑
ℓ=m

f(m)ν(ℓ).

From here, just take for all k ∈ Z, f(x) = 1{x=k} to obtain the desired result.

With this, we can prove a key part of the proof of Theorem 3.15.

Lemma 3.18.
Hn

Sn − In

P
−→ 2

σ2

as n → ∞.

Proof. Let the sequence (τn)
∞
n=0 be defined as above. As ν has mean zero,

E[Sτ1 ] =

∞∑
k=0

kν[k,∞) =

∞∑
j=0

j(j+ 1)

2
ν(j) = σ2/2.

Moreover,

Mn =
∑

k:τk≤n

(Sτk − Sτk−1
) =

Φn(S)∑
k=1

(Sτk − Sτk−1
).

By Lemma 3.17 and the law of large numbers, Mn/Φn(S)
a.s.
−−→ σ2/2 as n → ∞

(Φn(S) → ∞ almost surely as n → ∞ by null recurrence). Using Lemma 3.16 and
the duality principle, we have that (Mn, Φn(S))

L
= (Sn − In, Hn) for all n ≥ 0. Hence,

Sn − In

Hn

P
−→ σ2

2

as n → ∞.

Now we turn our attention to the issue of concentration. In the proof of Theorem
3.15 we use a stronger result than just the law of large numbers convergence from
the previous proof. Given the previous two results, the proof is not too different from
that for most standard concentration inequalities in probabilistic combinatorics. A
full proof can be found in [LG05], we shall just record the result and move on.

Lemma 3.19. For any ϵ ∈ (0, 1/4) there exists a δ > 0 and an N ≥ 1 such that for all
n ≥ N and all 0 ≤ j ≤ n,

P
(∣∣∣∣Mj −

σ2

2
Φj(S)

∣∣∣∣ ≥ n1/4+ϵ

)
≤ e−nδ

.

We are now ready to prove Theorem 3.15.
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Theorem. (H⌊nt⌋/
√
n : t ≥ 0)

L
−→ (2Z(t)/σ : t ≥ 0) as n → ∞, where σ2 is the

variance of µ, and (Z(t) : t ≥ 0) is a reflected Brownian motion. The convergence
occurs in D[0,∞) with its associated metric.

Proof. Most of the tough computations were done in the above lemmas. We just
need to carefully go through and check that all of the convergences line up in the
right way.
Step 1: (The function φ : D[0,A] → D[0,A] defined by φ(f)(t) = sup0≤s≤t f(s)
is continuous with respect to the Skorokhod topology) Suppose that x, y are such
that d(x, y) < δ and without loss of generality assume that there is no dilation (of
course, we could just redefine y to be λy). Let t ∈ [0,A] and suppose without loss
of generality that sup0≤s≤t x(s) ≥ sup0≤s≤t y(s). Let (sk)

∞
k=1 be such that x(sk) →

sup0≤s≤t x(s). We have for large k that δ ≤ y(sk) ≤ x(sk). By compactness, we may
take some subsequence (skm)

∞
m=1 such that y(skm) → α∗ for some α∗. Then, it must

hold that sup0≤s≤t x(s) − δ ≤ α∗ ≤ sup0≤s≤t y(s) ≤ sup0≤s≤t x(s). Since t was chosen
arbitrarily the result follows.

Step 1, Donsker’s Theorem, and the continuous mapping theorem combine to
give that (

1√
n
(S⌊nt⌋ − I⌊nt⌋) : t ≥ 0

)
L
−→ (

σ(B(t) − inf
0≤s≤t

B(s)) : t ≥ 0

)
as n → ∞ in D[0,∞) (recall that convergence in D[0,∞) is equivalent to conver-
gence in D[0,A] for all values of A).

Step 2: (Turning S − I into H) Recall from the proof of Lemma 3.18 that (Sn −

In, Hn)
L
= (Mn, Φn(S)). Thus, Lemma 3.19 implies that for all 0 ≤ j ≤ n for n large

that

P
(∣∣∣∣Sj − Ij −

σ2

2
Hj

∣∣∣∣ > n3/8

)
≤ e−nϵ ′

for some ϵ ′ > 0. An application of the union bound gives

P
(

sup
0≤j≤n

∣∣∣∣Sj − Ij −
σ2

2
Hj

∣∣∣∣ > n3/8

)
≤ ne−nϵ ′

.

We can easily extend the event to the continuous height function on the interval
[0,A],

P
(

sup
0≤t≤A

∣∣∣∣S⌊nt⌋ − I⌊nt⌋ −
σ2

2
H⌊nt⌋

∣∣∣∣ > (An)3/8
)

≤ Ane−(An)ϵ
′

.

Summing and applying the Borel-Cantelli lemma we get that

sup
0≤t≤A

∣∣∣∣S⌊nt⌋ − I⌊nt⌋√
n

−
H⌊nt⌋√

n

∣∣∣∣ a.s.
−−→ 0

as n → ∞. Combining this with the conclusion after step 1 yields the final result.
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3.4 CONVERGENCE OF THE CONTOUR PROCESS

Towards the goal of proving convergence in the Gromov-Hausdorff topology, we
would also like to say something about the convergence of contour functions for
trees (and forests). Luckily this follows quite easily from the convergence for the
height process. In this subsection, we give a contour function analogue for Theorem
3.15.

If we want to make a contour process for a sequence of independent Bienaymé(µ)
trees (Tn)∞n=1 then we need to deal with the fact that the contour function for the tree
{∅} is trivial. Recall that the contour function γt for a tree t is defined on the interval
[0, 2(|t| − 1)]. We define a new contour function γ ′

t by γ ′
t(t) = γ(t)1{t∈[0,2(|t|−1)]}. We

define the contour process (Γ(t) : t ≥ 0) by concatenating the functions (γ ′
Tn
)∞n=1. For

all n ≥ 0 define Jn = 2n−Hn + In, where we recall that In = sup0≤k≤n Sk.

Lemma 3.20. Let (Tn)∞n=1 be a sequence of independent Bienaymé(µ) trees with (Un)
∞
n=0

being the vertices written in lexicographical order (that is, the ordering obtained from
making the root of Tn+1 larger than every vertex of Tn for all n ≥ 1 and ordering indi-
vidual trees with the standard lexicographical order). Then, over the interval [Jn, Jn+1]
the contour process goes from the height of Un to the height of Un+1. Moreover,

sup
t∈[Jn,Jn+1]

|Γ(t) −Hn| ≤ |Hn+1 −Hn|+ 1.

Proof. There are three possible cases (proof by look at Figure 5):

(i) Un+1 is a child of Un;

(ii) Un+1 is a child of an ancestor of Un;

(iii) Un+1 is the root of the next tree in the sequence.

It is pretty straightforward to verify both the first and the second statements by in-
duction by splitting them into these cases.

Theorem 3.21. If (Γ(t) : t ≥ 0) is the contour process for a sequence of Bienaymé(µ)
random forests, then (

1√
n
Γ(2nt) : t ≥ 0

)
L
−→ (

2

σ
Z(t) : t ≥ 0

)
in D[0,∞) as n → ∞, where (Z(t) : t ≥ 0) is reflected Brownian motion.

Proof. Let A > 0. Let φ : [0,∞) → N be a random function defined by φ(t) =∑∞
n=0 n1{t∈[Jn,Jn+1)}. By Lemma 3.20 and Theorem 3.15,

sup
t≤A

∣∣∣∣ 1√
n
Γ(2nt) −

1√
n
Hφ(2nt)

∣∣∣∣ ≤ 1√
n
+

1√
n

sup
t≤A

|H⌊nt⌋+1 −H⌊nt⌋|
P
−→ 0
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Figure 5: The first two trees in a realization of a Bienaymé forest along with the
contour process Γ(t) for the first two trees.

as n → ∞. From the definition of the intervals (Jn)∞n=0 we have that, for any m ≥ 0

sup
0≤t≤m

∣∣∣∣φ(t) −
t

2

∣∣∣∣ ≤ sup
n:Jn≤m

sup
t∈[Jn,Jn+1)

∣∣∣∣n−
t

2

∣∣∣∣ ≤ sup
n:Jn−1≤m

∣∣∣∣Jn2 − n

∣∣∣∣+1 ≤ sup
n:Jn−1≤m

Hn + |In|

2
+1.

It is clear that {n : Jn−1 ≤ m} ⊆ [m+ 1], and so

sup
0≤t≤m

∣∣∣∣φ(t) −
t

2

∣∣∣∣ ≤ sup
n≤m+1

Hn

2
+

|Im|

2
+ 1.

Replacing m with 2An we get,

1

n
sup

0≤t≤A

|φ(2nt) − nt| ≤ 1

n
sup

0≤k≤2An+1

Hk +
1

n
|I2An+1|+

1

n

P
−→ 0

as n → ∞. Combining the two inequalities and applying Theorem 3.15 one more
time we arrive at the final result.

3.5 ALDOUS’ THEOREM

We are ready to turn our attention to combinatorial trees again and prove our first
scaling limit theorem for random trees. Specifically, we identify a universal limit for
conditioned Bienaymeé trees. The universal limit is known as the Brownian contin-
uum random tree.
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Definition 3.22. Let (e(t) : t ∈ [0, 1]) be a Brownian excursion. Extend the function
to [0,∞) by defining e(t) = 0 for t > 1. The random metric space Te is called the
Brownian continuum random tree (CRT).

We shall learn about the CRT as we continue to develop the theory of scaling
limits (specifically, Section ?? offers a lot of insight into the structure of the tree),
though for the moment it’s, main importance is that it is the limit in the following
theorem.

Theorem 3.23 (Aldous’ Theorem). Let Tn
L
= Bienaymé(n, µ) be a critical Bienaymé

tree considered as a real tree with length one edge lengths (take the tree encoded by the
contour function). If µ has finite variance σ2, then 1

σ
√
2n

Tn
L
−→ Te as n → ∞ in the space

(T, dGH).

As one can imagine from the work done above, the convergence is essentially a
corollary of a functional convergence result for the height/contour functions.

Theorem 3.24. Let Tn
L
= Bienaymé(n, µ) be a non-trivial critical Bienaymé tree, and

let σ2 be the variance of µ. Let (H(n)
k )nk=1 be the height process for Tn for each n ≥ 1.

Then, (
1√
n
H

(n)
⌊nt⌋ : 0 ≤ t ≤ 1

)
L
−→ (

2

σ
e(t) : 0 ≤ t ≤ 1

)
as n → ∞ in D[0, 1]. (e(t) : 0 ≤ t ≤ 1) is a normalized length 1 Brownian excursion.

The proof builds on the work done on Theorem 3.15, though some additional
effort is needed to address the fact that the trees have a fixed size. This change
removes the independence between each jump in the walk and breaks the ability to
apply Donsker’s Theorem. Because of this, we need a version of Donsker’s Theorem
for discrete excursions.

Lemma 3.25. Let (ξk)
∞
k=1 be a sequence of i.i.d. random variables with mean 0 and

variance 1 and let Sk =
∑k

i=1 ξi for all k ≥ 0. Let τ = inf{k ≥ 1 : Sk ≤ 0}. Let (S∗
k)

∞
k=0 be

distributed like Sk under P(·|τ = n), i.e., P(S∗
k = j) = P(Sn = j|τ = n) for all k ≥ 0.(

1√
n
S∗
⌊nt⌋ : 0 ≤ t ≤ 1

)
L
−→ (e(t) : 0 ≤ t ≤ 1)

as n → ∞ in D[0, 1].

The proof of this lemma follows a similar structure to the proof of the original,
and was developed over many papers in the 1970’s [Bel72, Kai75, Kai76]. If I have
time later I might try to fill this proof in, but for now I’m going to skip past it.

Proof of Theorem 3.23. We shall deal only with the convergence of the height process
for the trees (Tn)

∞
n=1, noting that converting the result to be about the contour func-

tion follows the exact same structure as the conversion of Theorem 3.15 provided in
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Theorem 3.21. Let T L
= Bienaymé(µ) be an unconditioned tree and let (Sn)

∞
n=0 and

(Hn)
|T |−1
n=0 be its corresponding DFQ process and height process. From the local limit

theorem for simple random walks we have that

lim
n→∞ sup

x

∣∣∣∣√2πnσP(Sn = x) − e−
x2

2nσ2

∣∣∣∣ .
Then, using the cycle lemma for simple random walks,

P(|T | = n) = P(S0 ≥ 0, ..., Sn−1 ≥ 0, Sn = −1) =
1

n
P(Sn = −1) ∼

1

σ
√
2πn3

.

In proving Theorem 3.15, we proved that

P
(

sup
0≤t≤1

∣∣∣∣H⌊nt⌋√
n

−
2(S⌊nt⌋ − I⌊nt⌋)

σ2
√
n

∣∣∣∣ > n−1/8

)
≤ ne−nϵ

for some ϵ > 0. As P(|T | = n) is polynomial in n we can condition without changing
much,

P
(

sup
0≤t≤1

∣∣∣∣H⌊nt⌋√
n

−
2(S⌊nt⌋ − I⌊nt⌋)

σ2
√
n

∣∣∣∣ > n−1/8
∣∣∣ |T | = n

)
≤ O

(
n5/2e−nϵ)

.

Recalling the continuity of the supremum and infimum with respect to the Skorokhod
topology and applying Lemma 3.25 we get that (H(n)

⌊nt⌋ : 0 ≤ t ≤ 1)
L
−→ ( 2

σ2e(t) : 0 ≤
t ≤ 1) in the space D[0, 1], where we are defining (H

(n)
n )n−1

n=0 to be the height process
for Tn.

A REMARK ON THE HEIGHT OF THE BROWNIAN CRT

A nice corollary of Aldous’ Theorem is that the height of critical Bienaymé trees
scaled by 1/

√
n converges to the height of the Brownian CRT. This naturally leads

one to wonder what the height of the Brownian CRT is. Recall that the root of Te is
the equivalence class [0]Re. Since e(0) = 0, this implies that ht(Te) = sup0≤t≤1 e(t).
That is a pretty clean description, but studying sup0≤t≤1 e(t) is far from an easy job.
For example, the diameter (which is closely related to the height), has a probability
density given by

f(y) =

√
2π

3

∑
n≥1

(
64

y2

(
4b4

n,y − 36b3
n,y + 75b2

n,y − 30bn,y

)
+

16

y2

(
2b3

n,y − 5b2
n,y

))
e−bn,y ,

where bn,y = 8π2n2

y2 [Sze06, Wan15]. It can be proven either by using the Brownian
CRT’s close relationship with combinatorial trees or via direct analysis of the the
supremeum of Brownian excursions.
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