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What is a temporal graph?

Definition: Temporal graph
Let G = (V , E ) be a graph, and λ : E → [0, ∞) be an injective
function. The pair (G , λ) is called a temporal graph.

Definition: Reachability
For vertices u, v ∈ G , we say that u can reach v if there exists a
path P from u to v where λ increases as we travel from u to v
along P.
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What is a temporal graph?

Definition: Random simple temporal graph
A temporal graph (G , λ), where G is an Erdős-Rényi random graph
and (λ(e) : e ∈ E ) is a collection of independent uniform[0, 1]
random variables.

Network science motivations: disease spread, information
flow on social networks, etc.
Mathematical motivations: This new definition of
reachability is not symmetric or transitive, which complicates
the analysis of phase transitions.
In recent years, a lot of effort has been put towards
understanding this model.
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Towards random temporal trees

Some motivation for temporal trees

When studying sparse Erdős-Rényi random graphs,
approximating the neighbourhood around a vertex with a
binomial(n, p) offspring distribution Bienaymé-Galton-Watson
tree is a commonly used technique.
This tree-based approximation has been used to study random
simple temporal graphs as well.
However, outside of the context of random simple temporal
graphs, temporal Bienaymé-Galton-Watson trees have not
been studied.
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Towards random temporal trees

Definition: Uniform temporal tree
Let Tn be an infinite n-ary rooted plane tree, with independent
uniform[0, 1] random variables, Ue , assigned to each edge. Let Tn,p
be obtained from Tn by deleting all vertices who’s unique path
from the root to it is not strictly decreasing, with all edge labels
less than p. We call Tn,p a uniform temporal tree.
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Figure: The first three generations in a realization of T2,0.4.
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Results on uniform temporal trees

Proposition (A., Devroye, Lugosi 2025+)

For all n ≥ 1, E|Tn,p| = enp.

Proof

There are nk vertices in the kth generation of Tn.
Each of the vertices in the kth generation are in Tn,p with
probability pk

k! .
root vU1 U2 Uk−1 Uk

P(v ∈ Tn) = P(p ≥ U1 ≥ U2 ≥ ... ≥ Uk) = pk

k!

E|Tn,p| =
∑∞

k=0
(np)k

k! = enp.
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Results on uniform temporal trees

Theorem (A., Devroye, Lugosi 2025+)
|Tn,p |
enp

L−→ E , where E is an exponential(1) random variable.

Let Hn be the height of Tn,p. Then, Hn
np

P−→ e.

and some more...
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Initial exploration

The first two generations of Tn,p

Give the root label p, and give every other vertex the label of
its incoming edge.
In the first generation, vertices with label above p are deleted.
Below the leftmost child (if it isn’t deleted in the step above),
vertices with label above U1 are deleted.

p

U1

U ′
1 U ′

2 · · · U ′
n

U2 · · · Un
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Initial exploration

How does the tree evolve?

Give the root label p, and give every other vertex the label of
its incoming edge.
In the first generation, vertices with label above p are deleted.
Below the leftmost child (if it isn’t deleted in the step above),
vertices with label above U1 are deleted.

Subtrees below a vertex with label ℓ are distributed like Tn,ℓ!

p

U1

L= Tn,U1

U2 · · · Un
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Some facts about uniform spacings

Lemma

Let U1, ..., Un be a collection of independent uniform[0, 1]
random variables. Set V0 = 1, Vn+1 = 0, and let
V1 ≥ ... ≥ Vn be U1, ..., Un re-ordered from greatest to least.
Define Sk = Vk−1 − Vk for all k ∈ {1, ..., n + 1}.
Let (Ek)∞

k=0 be a sequence of independent exponential(1)
random variables.

Then,

(S1, ..., Sn+1) L=
(

E1∑n+1
k=1 Ek

, ...,
En+1∑n+1
k=1 Ek

)
.

0 1

V0V1V2V3V4

S1S2S3S4
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Some facts about uniform spacings

Lemma

Let U1, ..., Un be a collection of independent uniform[0, 1]
random variables. Set V0 = 1, Vn+1 = 0, and let
V1 ≥ ... ≥ Vn be U1, ..., Un re-ordered from greatest to least.
Define Sk = Vk−1 − Vk for all k ∈ {1, ..., n + 1}.
Let (Ek)∞

k=0 be a sequence of independent exponential(1)
random variables.

Then,

(S1, ..., Sn+1) L=
(

E1∑n+1
k=1 Ek

, ...,
En+1∑n+1
k=1 Ek

)
.

Note: For any fixed L > 0, n · (S1, ..., SL) L−→ (E1, ..., EL) as
n → ∞.
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Some facts about uniform spacings

More spacings

When looking at Tn,p, we only kept the vertices with label
below the label of its parent.
When we only look at entries in a vector of uniforms
(U1, ..., Un) that are below a fixed x ∈ (0, 1), the gaps are still
distributed like uniform spacings.

0 1x

S1S2S3
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The uniform spacings coupling

A new construction of uniform temporal trees

For each v ∈ Tn, associate a vector of uniform spacings
(S(v)

1 , ..., S(v)
n+1).

We define labels for each vertex (ℓv : v ∈ Tn). We start with
the root having label p, and the rest are defined recursively
according to the following picture:

ℓv

ℓv − S(v)
1 ℓv − S(v)

1 − S(v)
2 · · · · · · ℓv −

∑n
k=1 S(v)

k

Finally, let Tn,p be obtained by deleting all vertices that have
negative label.
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The uniform spacings coupling

A new (approximate) construction of uniform temporal trees

For each v ∈ Tn, associate a vector of independent
exponential(1) random variables (E (v)

1 , ..., E (v)
n ).

We define labels for each vertex (ℓv : v ∈ Tn). We start with
the root having label p, and the rest are defined recursively
according to the following picture:

ℓv

ℓv − 1
nE (v)

1 ℓv − 1
n (E (v)

1 + E (v)
2 ) · · · ℓv − 1

n
∑n

k=1 E (v)
k

Finally, let Tn,p be obtained by deleting all vertices that have
negative label.
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The uniform spacings coupling

A new (approximate) construction of uniform temporal trees

For each v ∈ Tn, associate a vector of independent
exponential(1) random variables (E (v)

1 , ..., E (v)
n ).

We define labels for each vertex (ℓv : v ∈ Tn). We start with
the root having label p, and the rest are defined recursively
according to the following picture:

ℓv

ℓv − E (v)
1,n ℓv − E (v)

1,n − E (v)
2,n · · · ℓv −

∑n
k=1 E (v)

k,n

Finally, let Tn,p be obtained by deleting all vertices that have
negative label.

We call the leftmost child the rank 1 child of v , the second to
the left the rank 2, and so on...
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The uniform spacings coupling

p

p − E1,n p − E1,n − E2,n p − E1,n − E2,n − E3,n · · · p −
∑n

k=1 Ek,n

p − E1,n − E (1)
1,n p − E1,n − E (1)

1,n − E (1)
2,n · · · p − E1,n −

∑n
k=1 E (1)

k,n
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p
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p
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The uniform spacings coupling

p

p − E1,n p − E1,n − E2,n p − E1,n − E2,n − E3,n · · · p −
∑n

k=1 Ek,n

p − E1,n − E (1)
1,n p − E1,n − E (1)

1,n − E (1)
2,n · · · p − E1,n −

∑n
k=1 E (1)

k,n

Notice that the two portions are conditionally independent
given the label of the leftmost child of the root.
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The uniform spacings coupling

p

p − E1,n p − E1,n − E2,n p − E1,n − E2,n − E3,n · · · p −
∑n

k=1 Ek,n

L= Tn,p−E1,n
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The uniform spacings coupling
p

p − E1,n
L≈ Tn,p−E1,n

L= Tn,p−E1,n

The two subtrees are (approximately) identically distributed,
and conditionally independent given the label of the leftmost
child.
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The hidden branching random walk

Transforming Tn into a binary tree

From Tn we construct a new tree T b
n according to the

following rule:
Let v ∈ Tn. In T b

n , the left child of v is its child of largest
rank in Tn, and the right child is the sibling of v in Tn of rank
one higher (if one exists).

p

p − E1,n

p − E1,n − E (2)
1,n

L= Tn,p−E1,n−E (2)
1,n

L
≈ Tn,p−E1,n−E (2)

1,n

p − E1,n − E2,n

L= Tn,p−E1,n−E2,n

L
≈ Tn,p−E1,n−E2,n
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The hidden branching random walk

Transforming Tn into a binary tree

From Tn we construct a new tree T b
n according to the

following rule:
Let v ∈ Tn. In T b

n , the left child of v is its child of largest
rank in Tn, and the right child is the sibling of v in Tn of rank
one higher (if one exists).

p

p − E1,n

p − E1,n − E (2)
1,n

L= Tn,p−E1,n−E (2)
1,n

L
≈ Tn,p−E1,n−E (2)

1,n

p − E1,n − E2,n

L= Tn,p−E1,n−E2,n

L
≈ Tn,p−E1,n−E2,n

← (generation -1)
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The hidden branching random walk

Transforming Tn into a binary tree

The vertex labels in T b
n evolve according to a branching

random walk with step size 1
nE , where E L= exponential(1).

The subtrees hanging below a generation L are all
conditionally independent given the labels in generation L.

p

p − E1,n

p − E1,n − E (2)
1,n

L= Tn,p−E1,n−E (2)
1,n

L
≈ Tn,p−E1,n−E (2)

1,n

p − E1,n − E2,n

L= Tn,p−E1,n−E2,n

L
≈ Tn,p−E1,n−E2,n
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The hidden branching random walk

Transforming Tn into a binary tree

The subtrees hanging below a generation L are all
conditionally independent given the labels in generation L.
→ Note that, for a fixed L > 0, all vertices in generation L
have positive label with high probability. Moreover, up to
generation L, T b

n contains a bounded number of vertices.

p

p − E1,n

p − E1,n − E (2)
1,n

L= Tn,p−E1,n−E (2)
1,n

L
≈ Tn,p−E1,n−E (2)

1,n

p − E1,n − E2,n

L= Tn,p−E1,n−E2,n

L
≈ Tn,p−E1,n−E2,n

Caelan Atamanchuk Preaching about random temporal trees



Putting it all together

Conclusions from the binary tree conversion

Let v1, ..., v2L be the vertices in a fixed generation L of T b
n .

Let (Xv : v ∈ T b
n ) be branching random walk on T b

n with step
size exponential(1).
Let T1(vi) be the left subtree of vi in T b

n , and T2(vi) the right
subtree after we delete negative label vertices.

Following from the remarks from the last slide, we know that
with high probability

|Tn,p| ∼
2L∑

i=1

(
|T1(vi)| + |T2(vi)|

)
.
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Putting it all together

Conclusions from the binary tree conversion

Following from the remarks from the last slide, we know that
with high probability

|Tn,p| ∼
2L∑

i=1

(
|T1(vi)| + |T2(vi)|

)
.

One can use the conditional independence of the Ti(vj)’s to
argue that the above sum really behaves like

2L∑
i=1

E
[
|T1(vi)| + |T2(vi)|

∣∣∣ (ℓv1 , ..., ℓv2L )
]
.
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Putting it all together

Conclusions from the binary tree conversion
Using the BRW connection, the labels of the vertices in the Lth
generation satisfy (ℓv1 , ..., ℓv2L ) L= p − n−1(Xv1 , ..., Xv2L ).

Thus,

|Tn,p| ≈
2L∑

i=1
E
[
|T1(vi)| + |T2(vi)|

∣∣∣ (ℓv1 , ..., ℓv2L )
]

≈ 2
2L∑

i=1
E
[
|T1(vi)|

∣∣∣ ℓvi

]
= 2

2L∑
i=1

en(p−n−1Xvi ) = 2
2L∑

i=1
enp−Xvi .

|Tn,p|/enp ≈ 2
∑2L

i=1 e−Xvi := 2XL.
XL is a martingale, and so has some limit X . Using the
recursive properties of XL we can compute the moments of X
and show that that X L= 1

2exponential(1).
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Thank you all for listening :)
The QR code below leads to some references for papers on
random temporal graphs (These slides are on my website
too)! There are plenty of cool open problems surrounding
these topics - come ask me about them!

(a) QR Code (b) Mathematicians
Caelan Atamanchuk Preaching about random temporal trees


